spotsaas-logo
Get Listed

Parameter Tuning

What does 'Parameter Tuning' mean?

Parameter tuning in neural networks refers to the process of improving the model’s performance by adjusting its internal settings, specifically the weights, to minimize prediction errors. During training, the network learns patterns from data but needs to constantly refine these parameters to improve accuracy. This refinement is achieved through optimization algorithms like Stochastic Gradient Descent (SGD) and Adam, which update the weights based on the error made during each training cycle. The goal of parameter tuning is to reduce the loss, or the difference between predicted and actual values, leading to more accurate predictions. Effective parameter tuning not only improves accuracy but also accelerates the training process, allowing the model to efficiently learn complex patterns in the data. This results in better performance across tasks such as image recognition, language processing, and recommendation systems.

List of software with Parameter Tuning functionality

No ratings

No ratings

No ratings

No ratings

No ratings

No ratings

No ratings

No ratings

No ratings

No ratings

No ratings

No ratings

This software is researched and edited by

Rajat Gupta is the founder of Spotsaas, where he reviews and compares software tools that help businesses work smarter. Over the past two years, he has analyzed thousands of products across CRM, HR, AI, and finance — combining real-world research with a strong foundation in commerce and the CFA program. He's especially curious about AI, automation, and the future of work tech. Outside of SpotSaaS, you'll find him on a badminton court or tracking the stock market.

Disclaimer: This research has been collated from a variety of authoritative sources. We welcome your feedback at [email protected].